地址:

您现在的位置 : 包膜病毒

包膜病毒

在大的生物反应器中培养细胞通常是最便捷的方式

  在生物反应器中生产需要对悬浮的生产细胞扩大培养。多个用于生产慢病毒的细胞系(293T、293FT、293SF-3F6)被报道易于在化学成分限定的培养基(Freestyle 293 and F17, Invitrogen, Carlsbad, CA; HyQSFM4TransFx293, Hyclone, Logan, UT)中适应悬浮培养。这些细胞可以在没有为载体的情况下迅速悬浮生长,这使得它们的培养和扩大比贴壁培养的细胞容易很多。此外,培养基中没有牛血清及其他动物来源的组分是临床生产最合适的情况,它可以降低被外源物质污染的风险。

  PEI转染的一个缺点是达到高转染效率所需要的质粒DNA的量。Ansorge等1ug/106 293SF-3F9细胞,而Marceau及Gasmi报道最佳的用量是2.5ug/106 293T细,这样在大规模制备时会需要大量的质粒(例如,一个200L的生物反应器需要750mg质粒DNA)。这么大量的DNA意味着原料成本过高,大量残留DNA需要在后续处理中去除。

  另外,有报道证实电穿孔可作为真核细胞的转染方法。Witting等报道采用电转可以高效的生产慢病毒。然而,这种方法需要在电转时将细胞浓缩到108/毫升,因此很难扩大到工业规模。事实上,现在的方法是在电转前浓缩,电转后稀释到原来的体积。更大规模的操作需要例如连续离心机等特殊设备。一般来说,细胞培养阶段的技术操作控制地越少越好,因为他们会增加微生物污染的危险。此外,离心也可能会导致细胞压力及大量细胞损伤,进而会降低病毒产量。因此,虽然很有前景,但是电转要想在工业规模获得应用还需要进一个完善和简化。

  另一种组成型包装技术是以MolMed S.p.A开发的RD-MolPack细胞为代表。RD-MolPack系统与STAR、WinPax细胞类似,也是基于HEK-293T细胞开发的,也表达RD114包膜蛋白。与WinPac的RD-114-PR包膜蛋白不同,RD-MolPack细胞带有RD114-TR包膜蛋白,该蛋白含有RD114蛋白的胞外和穿模结构域并融合有MLV-Ampho4070膜蛋白的胞质尾巴,从而利于整合入慢病毒载体。RD-MolPack细胞独一无二的地方在于,HIV-1 gag、pol、rev及潮霉素抗性基因是通过将嵌合baculo-AAV感染293T细胞导入的。细胞首先转染表达AAV Rep78的质粒来引导baculo-AAV载体整合入基因组。产生的表达两个拷贝gag-pol-rev基因的中间克隆PK-7显示出极高的遗传稳定性,它可以在有或没有潮霉素筛选的情况下连续培养一年,其生产的p24Gag水平分别为6.7±3.5和15.3±8.4ng/106 细胞/天。从PK-7细胞分别独立衍生出RD2-MolPack和RD3-MolPack来分别生产第二代和第三代慢病毒。与St.Jude儿童研究医院的MolMed的策略类似,包膜基因和Tat基因(仅指RD2-MolPack细胞)是通过VSV-g包被的SIN-LV而不是SIN-MLV整合载体导入的。在构建包装细胞中使用MLV或者HIV SIN的重大安全问题是遥远的,但现实的可能是在新产生的慢病毒颗粒中动员了载体基因(env或gag-pol)。事实上发现,SIN-LV 真载体整合时东动员频率在0.1-0.03%左右,而SIN-MLV则会有一些痕量的3’LTR启动子活性。利用特殊的实验已经排除了上述安全问题及产生有复制能力慢病毒的可能。RD2-MolPack-Chim3生产细胞,表达抗-HIV chim3治疗基因(HIV Vif的显性负性突变体),其产生的慢病毒超过了瞬时转染人脐带血造血干细胞所生产的VSV-g包被的慢病毒。从RD3-MolPack-GFP生产细胞生产的表达GFP的SIN-LV可以转染90%的人外周血淋巴细胞,其M